
 
Departamento de Economía Aplicada 
http://webx06.webs4.uvigo.es 

  

   Working Paper:  19/04.   September 2019 

 

 di 
 

 

 

 
 

 

 

 

 

 

On Measuring Segregation in a Multigroup 
Context: Standardized Versus Unstandardized 
Indices 
 
Coral del Río 

Olga Alonso-Villar 

Coordinator:  José María Chamorro Rivas                                   
chamorro@uvigo.es 

mailto:chamorro@uvigo.es


1 
 

On Measuring Segregation in a Multigroup Context: 

Standardized Versus Unstandardized Indices∗ 

Coral del Río and Olga Alonso-Villar# 

Universidade de Vigo (ECOSOT-ECOBAS and EQUALITAS) 
 
 
 
 
Abstract 
There has been little discussion in the literature about the consequences of using 
standardized (versus unstandardized) segregation measures when comparing societies 
with different demographic compositions. To measure the segregation of a group in a 
multigroup setting, this paper develops standardized local segregation indices, which 
show a maximum value of 1 when the group is fully segregated, and links these measures 
with existing standardized overall segregation measures. Our research not only allows for 
enhancement of the local segregation approach—offering new measures and evaluating 
them against basic properties—but also provides a better understanding of existing 
standardized overall measures. To illustrate its value, this paper offers estimates of the 
occupational segregation of white women in the largest U.S. metropolitan areas using 
standardized and unstandardized segregation measures. This permits us to identify 
metropolitan areas that would have gone unnoticed if only one of these two approaches 
had been employed.    

 

JEL Classification: D63; J15; J16; J71 

 

Keywords: Multigroup segregation; Standardized segregation indices; Local segregation 
curves; Local segregation indices 

 

  

                                                           
∗ We gratefully acknowledge financial support from the Ministerio de Economía, Industria y 
Competitividad, the Agencia Estatal de Investigación, and the Fondo Europeo de Desarrollo Regional 
(ECO2017-82241-R) and Xunta de Galicia (ED431B2019/34). 
# Correspondence address: Universidade de Vigo; Facultade de CC. Económicas; Departamento de 
Economía Aplicada; Campus Lagoas-Marcosende s/n; 36310 Vigo; Spain. Tel.: +34 986812507; fax: +34 
986812401; e-mail: ovillar@uvigo.es. 



2 
 

1. Introduction  
As societies grow more diverse—whether in terms of race, ethnicity, or other 

characteristics of individuals—there is an increasing need to measure segregation in a 

framework that involves three or more groups. Since the 1990’s, there have been several 

indicators developed to quantify overall multigroup segregation, mainly according to an 

evenness perspective that focuses on differences in the sorting of the groups across 

organizational units (Silber, 1992; Boisso et al., 1994; Reardon and Firebaugh, 2002; 

Frankel and Volij, 2011). 

In a multigroup setting, apart from overall segregation, it is also possible to measure the 

segregation of a group (called local segregation, to distinguish it from overall 

segregation). The framework put forward by Alonso-Villar and Del Río (2010) allows for 

the measurement of local segregation in a way that is consistent with the measurement of 

overall segregation. This approach allows for identification of each group’s situation and 

contribution to overall segregation, which depends not only on the group’s segregation 

level but also on its demographic size.1 The indices proposed by these authors satisfy the 

property of scale invariance, according to which if the size of a group is multiplied by a 

positive number, the segregation level of that group remains unaffected provided that 

there is no change to its distribution across units (nor to the relative size of each 

organizational unit). Thus, for example, if the economy has 5 units, each of which 

accounts for 40 people, the segregation of a group of size 40 distributed as (10,10,10,10,0) 

should be equal to that of another group of size 80 distributed as (20,20,20,20,0). Both 

groups experience the same segregation level because they account for equal shares in 

each unit (a quarter of the corresponding group’s population in the first four units and 

zero in the last one).  

The property of scale invariance may result in the belief that the segregation level of a 

group is independent of the size of the group (in the above example, the segregation level 

is the same for groups of size 40 and 80). However, one must remember that a group’s 

segregation and its size are not completely independent dimensions. As we will discuss 

in more detail later on, the demographic share of a group impacts the highest segregation 

level that the group can attain. Pursuant to our above example (an economy consisting of 

                                                           
1 This approach also allows for the measurement of the consequences of segregation for each group in 
monetary terms (Del Río and Alonso-Villar, 2015) and in terms of objective well-being (Alonso-Villar and 
Del Río, 2017a). 
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200 people and 5 organizational units of equal size), a group consisting of 40 individuals 

is fully segregated if it is concentrated in units with no workers from other groups, i.e., 

(40, 0, 0, 0, 0), which implies that this group has no presence in units accounting for 80% 

of the total population. This scenario is impossible for a group of size 80 because, for 

such a group to be fully segregated, no group members may be found in units representing 

60% of the total population, i.e., (40, 40, 0, 0, 0). In other words, this group is missing 

from a smaller part of the economy (60% vs. 80%). 

The maximum segregation that a group can experience depends on the group’s size, 

which is thereby an important feature to account for in empirical studies; this is 

particularly true when comparing segregation levels of groups of very different (relative) 

sizes, exploring the segregation of a growing group over time, or in international 

comparisons when analyzing a group whose size varies significantly among countries.  

Given that some of the most well-known overall segregation indices can be expressed as 

weighted averages of the (local) segregation of the groups involved (Alonso-Villar and 

Del Río, 2010), it is reasonable to expect that the (relative) size of the groups may also 

determine the maximum value attainable by overall indices. In fact, many of these overall 

indices are not equal to 1 when there is full segregation. This is the case for the Ip index 

(Silber, 1992), the (unstandardized) Gini index (Alonso-Villar and Del Rio, 2010), and 

the mutual information index (Theil and Finizza, 1971; Frankel and Volij, 2011).2 For 

this reason, Reardon and Firebaugh (2002) opted for standardized (or normalized) indices 

between 0 and 1. In particular, making use of disproportionality functions that compare 

the presence of each group in each unit with its share in the economy, these authors 

derived the generalized dissimilarity index, the generalized Gini index, and the Theil 

information theory index. These three indices result from dividing each of the 

abovementioned unstandardized indicators by its maximum value, which is a function of 

the groups’ shares (Reardon and Firebaugh, 2002).3  

However, as far as we know, there has been little discussion since that time of the 

consequences of using standardized (versus unstandardized) measures (Mora and Ruiz-

                                                           
2 Consider a simple economy with 4 groups of the same size and 4 equally-sized units. In case of maximum 
segregation, both the Ip index and the Gini index are equal to 0.75, whereas the mutual information index 
is equal to 1.39. If instead we had 4 groups (and 4 units) of sizes 10, 10, 10, and 70, the maximum values 
of the indices would be 0.48 and 0.79, respectively. 
3 These authors developed another overall segregation index, based on the squared coefficient of variation, 
the maximum value of which depends not on the group’s weights but on the number of groups. 
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Castillo, 2011), especially when comparing societies with different demographic 

compositions. This paper aims to: a) develop standardized local segregation indices, 

which have a maximum value of 1 when the group is fully segregated; and b) link these 

measures with existing (standardized) overall segregation measures. Our research not 

only facilitates enhancement of the local segregation approach—offering new measures 

and evaluating them against basic properties—but a better understanding of some of the 

standardized overall segregation measures assessed in Reardon and Firebaugh (2002).  

Importantly, our analysis shows that when a segregation indicator is standardized by 

dividing it by its maximum conditional on the groups’ weights, instead of the absolute 

maximum, there is a different maximum depending on the case.4 This implies that the 

resulting indices quantify segregation from an angle significantly different from the 

perspective assumed by unstandardized segregation indices. Further, this is the case 

whether we use local or overall measures. Unstandardized measures associated with 

disproportional functions account for the extent of the distance between the distribution 

of the groups (across units) and the “egalitarian” distribution—according to which the 

presence of each group in each unit must equal the expected value assigned by its weight 

in the economy. On the contrary, standardized measures quantify the proximity of the 

former distribution to the distribution of maximum segregation, which (per the three 

indices mentioned earlier) depends on the groups’ weights. A standardized segregation 

approaching a score of 1 does not necessarily imply a high level of unstandardized 

segregation. Reciprocally, a high value of unstandardized segregation may be regarded 

as a low level when accounting for the demographic structure. By standardizing 

segregation using a maximum that depends on demographic composition, the resulting 

index attains a value of 1 when there is full segregation, although that scenario may be 

associated with a high or low unstandardized segregation level.5 

In undertaking this research, we use the local segregation curve proposed by Alonso-

Villar and Del Río (2010), which helps to interpret the relationship that exists between a 

group’s size and its maximum segregation. We then define standardized local segregation 

                                                           
4 The absolute maximum of an index refers to the highest segregation reached if the shares of the groups 
(and units) are not given. Standardizing indices using this maximum would ensure a common reference, 
which would facilitate comparability. In empirical analyses, however, it seems more sensible to take the 
size of the groups as given.   
5 Note that the standardized overall index C proposed by Reardon and Firebaugh (2002) using the squared 
coefficient of variation does not have this problem provided that one compares situations with the same 
number of groups. 
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indices—in line with the standardization measurement proposed by Reardon and 

Firebaugh (2002) in the case of overall segregation—and evaluate them against a set of 

properties. In addition, we establish the conditions under which the ranking provided by 

the local segregation curves is consistent with that of the standardized local indices. 

Finally, drawing on the 2012-16 American Community Survey (ACS), we conduct an 

empirical examination of the occupational segregation of white women in the largest 

metropolitan areas in the U.S., using standardized and unstandardized indices. We 

identify metropolitan areas that would have gone unnoticed if we had pursued only one 

of these two approaches.  

2. Measuring the Segregation of a Group: A New Proposal 
As mentioned earlier, the maximum segregation level of a group is not independent of 

the group’s size. The reason is that when a group is small, it can be absent from 

organizational units that account for a large share of total population, whereas this 

situation is impossible for large groups. In other words, the larger the group, the lower 

the maximum segregation. How, therefore, is it possible to compare two groups that differ 

in terms of size but  are distributed across units in the same way in relative terms? Here 

we explore a procedure that measures the segregation of a group while accounting not 

merely for how the group is distributed across units, but also the maximum segregation 

attainable by the group. In other words, we quantify the distance of a group’s distribution 

from that of its maximum segregation.  

2.1 Relationship Between Group’s Size and Group’s Maximum Segregation 

To illustrate the effect of a group’s size on its maximum segregation level, we use the 

local segregation curve proposed by Alonso-Villar and Del Río (2010). This curve shows 

the underrepresentation of a group across organizational units vis-à-vis the distribution of 

the population across these same units. 

Let g be one of the N mutually exclusive groups of society (g=1,…,N). g
jc  denotes the 

number of individuals of group g in unit j (j=1,…,J), jt  is the number of total individuals 

in that unit ( g
j jc t≤ ), g g

j
j

C c=∑  is the group’s size, and j
j

T t=∑  is total population. 

To build the local segregation curve of group g, the demographic share of which is 
gC

T
, 
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first, we must rank the organizational units in ascending order of the ratio 
g
j

j

c
t

. Then, the 

cumulative proportion of total individuals is plotted on the horizontal axis, while the 

cumulative proportion of group’s g individuals is plotted on the vertical axis. Namely, if 

we denote by i
j

i j

t
T

τ
≤

≡∑  the proportion of individuals who are in the first j organizational 

units, the segregation curve at point jτ  is 

( )

g
i

i jg
j g

c
S

C
τ ≤=

∑
. 

The curve at intermediate points is determined by linear interpolation (see Figure 1). This 

tool can be used to compare different scenarios. Thus, if one curve dominates another 

(i.e., no point of the former curve lies below the latter curve and does at some point lie 

above, as is the case of Sg relative to Sg* in Figure 1), we can say that the group is less 

segregated in the first case than in the second. 

 
Figure 1. Two examples of local segregation curves 

Alonso-Villar and Del Río (2010) proposed several local segregation indices—adapted 

from well-known inequality measures—to quantify the extent to which a local 

segregation curve diverges from an even distribution of the group across organizational 

units (i.e., if 
g
j

j

gc
t

C
T

= ) and, therefore, the level of that group’s segregation. These indices 

are Gg, Dg, and g
αΦ  (see Table 1).  
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Table 1. Unstandardized and standardized local segregation indices 

 

Note: The expression for g
αΦ  is valid for 0,1α ≠ . 
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The Gg index is equal to twice the area between the local segregation curve and the 45º 

line. The index Dg measures the highest vertical distance of the curve to the 45º line. 

Along with its graphical interpretation, this index has a very intuitive meaning: when 

multiplied by 100, it represents the percentage of group g individuals that would have to 

switch organizational units for the group to have a segregation level of zero (Alonso-

Villar and Del Río, 2017).6 The generalized entropy family offers a different index 

depending on a parameter, α . This family accounts for both the group’s 

underrepresentation in organizational units (i.e., the lower part of the local segregation 

curve) and its overrepresentation (the upper part of the curve), although the lower the 

value of α , the more sensitive the index is to the group’s underrepresentation.7 The α  

values that are more commonly employed are 0.5, 1, and 2. 

Several of these local indices are related to overall segregation indices already extant in 

the literature (Alonso-Villar and Del Río, 2010). Thus, the weighted average of local 

indices Gg, Dg, 1
gΦ  and 2

gΦ  (with weights equal to the groups’ shares) are, respectively, 

equal to the (unstandardized) Gini index (Alonso-Villar and Del Rio, 2010), the Ip index 

(Silber, 1992), the mutual information index M (Theil and Finizza, 1971; Frankel and 

Volij, 2011), and the unstandardized version of Reardon and Firebaugh’s (2002) C index 

(divided by 2). It is important to note that, although these overall indices can be 

decomposed by groups in several ways, the components of such decompositions may not 

necessarily be good measures of the groups’ segregation. For example, the mutual 

information index can be written as the weighted average (with weights equal to the 

groups’ shares) of the difference between the entropy of the distribution of the population 

across units and the entropy of each group (Frankel and Volij, 2011). However, the 

difference between entropies is not a sensible local segregation indicator because its 

minimum value is not attained when the group is distributed across units in the same 

manner as the total population is—the difference can take negative values—nor does it 

                                                           
6 This index was initially proposed by Moir and Shelby Smith (1979) in a binary context, although its 
properties in a multigroup context, together with its relation to the local segregation curve, were later 
explored in Alonso-Villar and Del Río (2010). In the case of two groups, labeled 1 and 2, the sum of the 
segregation of the groups, D1 +D2, is equal to the dissimilarity index. 

7 Index 
0

/
ln  

/
g j j

g g
j j

t t T

T c C
Φ =

 
 
 

∑ can only be used if the group appears in all organizational units, i.e., 

if 0g
jc >  for all  j. For this reason, we will not define a standardized version of this index. 
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satisfy the property of insensibility to proportional subdivisions—the entropy is sensitive 

to the number of organizational units. On the contrary, the indices proposed by Alonso-

Villar and Del Río (2010) are truly local segregation measures because they satisfy a wide 

range of properties. 

As mentioned above, the maximum segregation of a group is attained when it is fully 

concentrated in units with no members of other groups.8 Let us assume, without loss of 

generality, that a group is fully concentrated in one organizational unit with no members 

of other groups.9 Figure 1 illustrates this situation as the case of a group that accounts for 

20% of the population. The curve of maximum segregation, denoted by Sg*, is equal to 0 

up to the unit in which the group is fully concentrated (i.e., at point 1
gC

T
− ) and jumps to 

1 when that unit is aggregated with the previous ones (i.e., when the cumulative 

proportion of population is 100%), thereby rendering a straight line between these two 

points. Table 1 shows the maximum values of the indices Gg, Dg, 1
gΦ  and g

αΦ , labelled, 

respectively, Gg*, Dg*, *
1
gΦ and *g

αΦ (the proofs are shown in Appendix A).  

2.2 Standardized Local Segregation Measures 

Building on the framework put forward by Alonso-Villar and Del Río (2010), we here 

develop several indicators with which to quantify the segregation of a group while 

accounting for that group’s maximum segregation. These indices, globally denoted by 

( ),g gc tΘ , are defined as the quotient between a local segregation index, ( ),g gc tΘ , and 

the value of that index when the group is fully segregated,  *gΘ , where cg is the vector 

representing the number of individuals of group g in each unit j (i.e., g
jc ) and t is the 

vector indicating the number of individuals in each unit j (i.e., jt ). Namely, 

( ) ( )
*

,
,

g g
g g

g

c t
c t

Θ
Θ =

Θ
 . This approach squares with the measurement of overall 

                                                           
8 Note that, in the real world, full segregation may not be possible because the number and size of the units 
cannot fit with the group’s size. This is why when an index is standardized being divided by its maximum, 
it is accomplished using a theoretical maximum that does not account for the units but instead approximates 
the maximum existing in each empirical case. Consequently, the actual distribution of maximum 
segregation may differ among indices.  
9 The property of insensibility to proportional subdivisions (see next subsection) ensures that we can focus 
on cases in which the group is concentrated in one unit of size equal to that of the group because 
distributions of maximum segregation across several units would be equivalent to this. 
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segregation put forward by Reardon and Firebaugh (2002) in that we divide the index by 

the maximum segregation level, although in our case segregation refers to a group (say, 

white women) rather than to overall segregation (say, by gender and race). 

To measure the segregation of a group we propose using the indices gG , gD , 1
gΦ , and 

g
αΦ  , shown in Table 1, which are obtained dividing the indices Gg, Dg, 1

gΦ , and g
αΦ , 

respectively, by their maximum values (Gg*, Dg*, *
1
gΦ , and *g

αΦ ). Imposing this 

standardization yields a maximum value of indices gG , gD , 1
gΦ , and g

αΦ  that is always 

1, which facilitates comparisons among different groups or a group across time and space. 

Making use of the interpretation of Dg mentioned above, gD (multiplied by 100) may be 

thought of as the proportion of group g individuals who must transfer among units to 

attain 0 segregation divided by the proportion who must move if the group were fully 

segregated. 

To determine whether these indices are suitable to measure the segregation of group, we 

list some basic properties proposed in the literature for that purpose, put forth new 

properties, and check whether our measures satisfy them. 

Alonso-Villar and Del Río (2010) established the following properties for measuring the 

segregation of a group: 

a) Size Invariance, which signifies that if we multiply both the number of individuals 

of the group and the number of total workers in each organizational unit by a 

positive number, the segregation of the group does not change. Namely, if 

'g g
j jc cλ=  and 'j jt tλ=  for any 0λ >  and 1,...,j J= , then 

( ) ( )', ' ,g g g gc t c tΘ = Θ . 

b) Scale Invariance refers to the fact that the group’s segregation does not change if 

the number of individuals in the group doubles, for example, and the total number 

of individuals triples. Namely, if 'g g
j jc cλ=  and 'j jt tβ=  for 1,...,j J=  (where 

0λ > , 0β > , and g
j jc tλ β≤ ), then ( ) ( )', ' ,g g g gc t c tΘ = Θ . 

c) Symmetry, which means that if the organizational units are permuted, the 

segregation of the group remains unaltered. Namely, if ( )'g g
j jc cΠ=  and ( )'j jt tΠ= , 
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where ( (1),..., ( ))JΠ Π  is a permutation of units (1,..., )J , then 

( ) ( )', ' ,g g g gc t c tΘ = Θ . 

d) Insensitivity to Proportional Subdivisions of organizational units, i.e., the 

segregation level of the group does not change if a unit is split into several units 

of equal size with identical number of individuals of the group. Namely, assuming 

for the sake of simplicity that we split the last unit in K>0 units, if 'g g
j jc c= and 

'j jt t=  for any 1,..., 1j J= − , and '
g

g J
J i

cc
K+ =  and ' j

j i

t
t

K+ =  for 0,..., 1i K= − , then 

( ) ( )', ' ,g g g gc t c tΘ = Θ . 

e) Sensitivity to Disequalizing Movements (type I): Disequalizing movements of the 

group between equally-sized organizational units, the size of which does not 

change after that movement (i.e., if a unit with a lower number of individuals of 

the target group than another loses some of those individuals in favor of the latter, 

other things being equal) increase the group’s segregation.10 Namely, if 

'g g
i ic c d= −  and 'g g

h hc c d= + , where i and h are two units such that g g
i hc c<  and 

i ht t= , whereas 'g g
j jc c=  for ,j i h≠ , then ( ) ( )', ,g g g gc t c tΘ > Θ . 

Note that alternative definitions of sensitivity to disequalizing movements may be 

articulated depending on how strictly we conceive of the circumstances under which we 

expect segregation to increase. This is why we put forth two new properties here: 

f) Sensitivity to Disequalizing Movements (type II): Disequalizing movements of the 

group between one organizational unit and another unit with a higher 

representation of the group (i.e., if the group’s representation diminishes in the 

former unit and rises in the latter), while the size of these units do not change, 

produce an increase in the group’s segregation. Namely, if 'g g
i ic c d= −  and 

'g g
h hc c d= + , where i and h are two units such that 

g g
i h

i h

c c
t t
< , whereas 'g g

j jc c=  for 

,j i h≠ , then ( ) ( )', ,g g g gc t c tΘ > Θ .  

g) Sensitivity to Disequalizing Movements (type III): Disequalizing movements of 

the group between one organizational unit and another unit with a higher 

                                                           
10 In Alonso-Villar and Del Río (2010) this property appears as “movement between groups.” 
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representation of the group (i.e., if the group’s representation diminishes in the 

former unit and rises in the latter), whereas the sizes of these units change 

accordingly, result in an increase in the group’s segregation. Namely, if 

'g g
i ic c d= − , 'g g

h hc c d= + , 'i it t d= − , and 'h ht t d= + , i and h being two units 

such that 
g g
i h

i h

c c
t t
< , whereas 'g g

j jc c=  and 'j jt t=  for ,j i h≠ , then 

( ) ( )', ' ,g g g gc t c tΘ > Θ . 

The question we now pose is whether properties (f) and (g) are too restrictive or, instead, 

commonly fulfilled. Propositions 1 and 2 reveal that these new properties, which allow 

us to compare more scenarios than does property (e), are not difficult to satisfy. In fact, 

as Corollaries 1 and 2 show, many local indices (unstandardized and standardized) meet 

them.   

Proposition 1. If a local segregation index ( ),g gc tΘ  satisfies insensitivity to 

proportional divisions and sensitivity to disequalizing movements type I, then it also 

fulfills sensitivity to disequalizing movements type II. 

Proof. See Appendix A.  

Proposition 2. Any local segregation index ( ),g gc tΘ  consistent with the dominance 

criterion given by the local segregation curves satisfies sensitivity to disequalizing 

movements type III. 

Proof. See Appendix A.  

Before continuing any further, let us summarize the properties that extant local 

segregation measures fulfill using Corollary 1. 

Corollary 1. The indices gG  and g
αΦ  satisfy size and scale invariance, symmetry, 

insensitivity to proportional divisions, sensitivity to disequalizing movements type I, 

sensitivity to disequalizing movements type II, and sensitivity to disequalizing movements 

type III. Index Dg fulfills size and scale invariance, symmetry, and insensitivity to 

proportional divisions. 

Proof. See Appendix A.  

Finally, Corollary 2 shows the properties fulfilled by our standardized indices. 
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Corollary 2. The indices gG  and g
αΦ  satisfy size invariance, symmetry, insensitivity to 

proportional divisions, sensitivity to disequalizing movements type I, sensitivity to 

disequalizing movements type II, and sensitivity to disequalizing movements type III. The 

index gD  fulfills size invariance, symmetry, and insensitivity to proportional divisions. 

Proof. See Appendix A.  

The next theorem demonstrates the relationship that exists between the dominance 

criterion associated with the local segregation curves and the standardized indices.  

Theorem. If the local segregation curve of a group dominates that of another group 

whereas the opposite holds for the curves of maximum segregation, then segregation will 

be lower in the first case than in the second for any standardized local segregation index 

( ) ( )
*

,
,

g g
g g

g

c t
c t

Θ
Θ =

Θ
 , where ( ),g gc tΘ  satisfies scale invariance, symmetry, 

insensitivity to proportional divisions, and sensitivity to disequalizing movements type I.11 

Proof. See Appendix A. 

Note that the properties that we require gΘ  meet are the properties that render these 

indices consistent with the dominance criterion established by Alonso-Villar and Del Río 

(2010) in their Theorem 1. In other words, for any local segregation index gΘ  that satisfies 

scale invariance, symmetry, insensitivity to proportional divisions, and sensitivity to 

disequalizing movements type I, gΘ  is lower in a given scenario than in another if, and 

only if, the local segregation curve of the former case dominates the latter. 

Accordingly, it follows that if the local segregation curve of a group is above another (i.e., 

the former dominates the latter) and the ranking is the reverse for the groups’ curves of 

maximum segregation, we need not calculate any gΘ  index (included in the set of indices 

established in the theorem) because all of them would lead to the same conclusion: 

segregation is lower for the first group. 

Proposition 3. The local segregation curve of a group associated with that group’s 

maximum segregation dominates that of another group if, and only if, in the former case 

the group accounts for a larger share of the population than it does in the latter. 

                                                           
11 If there is dominance in one case and the curves are equal in the other case, the theorem still holds. 



14 
 

Proof. See Appendix A. 

It follows from the foregoing proposition that to determine whether the curve of 

maximum segregation for a group dominates that of another group we need only know 

these groups’ demographic shares. 

 

2.3 The Segregation Level of a Group and Overall Segregation 

In their 2002 paper, Reardon and Firebaugh derived several standardized overall 

measures using the notion of disproportionality (i.e., the overrepresentation and 

underrepresentation of groups in units), and assessed them against James and Taeuber’s 

(1985) criteria.  

As Table 2 shows, these overall indices, G, D,12 H,13 and C,14 can be decomposed, 

respectively, in terms of local indices gG , gD , 1
gΦ , and 2

gΦ , in such a way that overall 

segregation is the weighted average of the local segregation of the groups involved. In 

the case of indices G and D, the weight of a group, gw , represents the percentage of  

individuals, relative to total population, who must change units in group g for this group, 

starting from full segregation, to end up in an even distribution, divided by the sum of the 

corresponding proportions for all the groups.  

                                                           
12 As these authors mentioned, the D index they developed is equivalent to that proposed earlier by Morgan 
(1975) and Sakoda (1981). To build overall index D, Sakoda (1981) drew inspiration from an expression 
like gD , although the segregation of a group was not explored. Note that D can also be expressed as the Ip 

index proposed by Silber (1992) divided by its maximum, 
*

p

p

D
I

I
= , where * *

g

g

g

p

C

T
I D= ∑  is the weighted 

average of the maximum segregation of the groups. 

13 H is the mutual information index, M, divided by its maximum (
*

M
H

M
= , where * *

1

g
g

g

C
M

T
= Φ∑ ).  

14 C is the quotient between an unstandardized index based on the squared coefficient of variation, which 

is here labeled UC, and its maximum segregation. Namely, 
*

C
UC

UC
= , where * *

22
g

g

gC
UC

T
= Φ∑ . 
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Table 2. Decomposition of standardized overall segregation measures in terms of standardized local segregation measures 
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The analysis undertaken thus far allows us to enlarge our knowledge of the measurement of 

overall segregation. Reardon and Firebaugh (2002) proved that the information theory index, 

H, is the only one of the four overall indices mentioned above that verifies the principle of 

transfers in a multigroup context (i.e., the only one that decreases when an individual in a 

group moves to a unit where the group has a lower representation). This is why these authors 

recommend the use of H to measure multigroup overall segregation.15 However, they also 

question “whether the violation of the principle of transfers seriously undermines the non-H 

indices, or instead is of little practical consequence in most research applications” (p. 58). In 

light of the local segregation approach shown here, that H is alone, among these standardized 

overall indices, in verifying the principle of transfers does not seem too problematic. As we 

have shown, both G and C can be generated via standardized local segregation indices 

satisfying sensitivity to disequalizing movements type III (which is the principle of transfers 

applied to the segregation of each group). This suggests that, unlike D, in the case of G and 

C, the violation of that property does not undermine the essence of the principle of transfers. 

The idea is that, when using G and C, we cannot ensure that the reduction in overall 

segregation arising from an equalizing movement of individuals in a group (from one unit to 

another) does more than offset the possible rise in segregation derived from the impact of the 

changes in the size of those units on other groups (especially if those groups are highly 

overrepresented in the unit of origin and underrepresented in the unit of destination). To 

assume these changes have to reduce overall segregation seems more a value judgment than 

a requirement that we cannot waive.16           

3. An Illustration: Occupational Segregation of White Women in U.S. 
Metropolitan Areas 

 
Using the above tools, we examine the occupational segregation of white women in the 

largest metropolitan areas in the U.S. We choose this group because it has a large presence 

in all large metropolitan areas while its demographic weight differs notably across them. Our 

                                                           
15 Mora and Ruiz-Castillo (2011) instead defend the use of M vs. H based on decomposability properties. 
16 This rationale can be extended to the corresponding unstandardized overall measures (UG, M, and UC). 
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analysis focuses only on those cities that allow us to highlight the main similarities and 

differences between unstandardized and standardized local segregation measures.   

We use the 2012-16 American Community Survey (ACS) provided by the IPUMS-USA 

(Ruggles et al., 2017). We select the 51 metropolitan areas (MAs) with more than 1 million 

inhabitants (based on the 2010 census). White women are identified on the basis of the 

information reported by the interviewees about their gender and race/ethnicity, considering 

only those women who are white and non-Hispanic. The percentage of white female workers 

ranges between 14.6% in Miami (FL) and 42.3% in Pittsburgh (PA). 

Our occupational classification distinguishes among 458 categories, which allows us to 

measure segregation in a highly precise way. For each MA we calculate 12 local segregation 

indices (6 unstandardized and 6 standardized): Dg ( gD ), Gg ( gG ), and g
αΦ ( g

αΦ ) for α = 0.1, 

0.5, 1, and 2. For the sake of simplicity, the presentation focuses on indices Dg and gD , 

referring to the others only when necessary. 

Figure 2 shows the segregation of white women in each MA according to Dg and gD .17 The 

dotted lines represent the mean values of the indices. Washington D.C. is among the MAs in 

which white women have the lowest overrepresentation and underrepresentation in 

occupations, whether we use standardized and unstandardized measures. According to Dg 

(=0.256), the percentage of white women in Washington D.C. who must switch occupations 

in order for the group to be evenly distributed is slightly above 25%.18 On the other hand, 
gD = 0.33, i.e., the number of white women in this MA who must change occupation 

represents 33% of all white women who must move in case of maximum segregation. This 

suggests that the segregation of white women in Washington D.C. is far from reaching its 

maximum level.19 

 

                                                           
17 Table A1 in Appendix B provides the corresponding values, together with the share of white women in each 
MA. Figure A1 shows the other indices. 
18 These findings are analogous to those reported by Alonso-Villar and Del Río (2017b) for an earlier period. 
19 In Washington, Dg*=0.77, i.e., if white women were completely segregated, 3 out of 4 would have to change 
occupations to achieve an even distribution. 
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Figure 2. Values of the indices Dg and gD  

The remaining indices used in this illustration lead to the same conclusion: Washington D.C. 

has a low level of segregation. Moreover, Washington has a lower level of segregation than 

other MAs for the wider range of indices consistent with the dominance criterion provided 

by the theorem presented in Section 2. Thus, for example, Figure 3 shows that Washington’s 

local segregation curve dominates that of New Orleans, while the opposite obtains for the 

curves of maximum segregation, thereby ensuring a lower level of segregation for white 

women in Washington for all the indices consistent with the dominance criterion 

(standardized or not).20  

                                                           
20 Other large MAs having a similar position in the ranking with indices Dg and gD include Chicago, Seattle, 
Denver, Phoenix, and Detroit (see Figure 2). According to most of the (standardized and unstandardized) 
indices, all these cities have intermediate levels of segregation. 
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Figure 3. Local segregation curves (actual and maximum), Washington and New Orleans 

Boston and Minneapolis exhibit a different pattern (Figure 2). They share with Washington 

D.C. a low segregation value according to Dg (=0.25). However, this figure represents around 

40% of the maximum value of the index, which means these cities have an intermediate rather 

than a low position in the ranking based on standardized measure gD . How do we interpret 

this? On the one hand, Dg shows that the three MAs have something in common: 1 out of 4 

white women working there must change occupation for this group to have in each 

occupation the same weight it has in the corresponding MA. On the other hand, gD  allows 

us to take a step further by accounting for another dimension, the demographic size of the 

group under consideration; this reveals that segregation is a more acute phenomenon in 

Boston and Minneapolis than it is in Washington D.C. This is so because the 25% of white 

women requiring occupation changes to achieve no segregation represents a higher 

proportion of total workers (or jobs) in the labor markets of the former cities.21 Thus, the 

number of white women who must move to another occupation in Washington D.C., in order 

for the group to have zero segregation, represents around 6% of the city workers, whereas in 

Minneapolis and Boston this figure is higher, at nearly 10%.  

                                                           
21 White women account for a larger share of the population in Boston and Minneapolis than in Washington 
D.C., while Hispanic and, especially, African American population have a remarkable presence. 
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By contrast, although San Jose and Houston have the highest levels of segregation according 

to Dg, they have an intermediate value with gD .22 The extraordinarily low proportion of 

white women workers in these cities (15.3% and 17.7%, respectively) allows them to have a 

standardized value similar to the one they have in Boston and Minneapolis (although they 

have a very different unstandardized segregation level).  

New Orleans and Memphis represent cases that stand in opposition to Washington because 

they have high levels of segregation regardless of the approach followed. Moreover, this is 

so although the three cities have a similar share of white women workers: 22.6% in 

Washington, 22.8% in Memphis, and 26.3% in New Orleans. This suggests that demographic 

size does not, in isolation, determine the segregation level of a group.    

Pittsburgh stands out as a paradigmatic case. The relatively low value of index Dg (=0.27) in 

this area represents almost half of the maximum segregation attainable by the group.23 

Pittsburgh is therefore the MA with the highest standardized segregation of the country 

according to index gD (=0.47). The 27% of white women who must change occupations to 

achieve an even distribution represents 11.5% of all the workers in the city. 

To verify the robustness of this result, we estimate the local segregation curves of Pittsburgh 

and those of other MAs to explore whether there is a relationship of dominance between 

them. As an example, Figure 4 compares the curves of local segregation and maximum local 

segregation for Pittsburgh with those for New Orleans, thereby illustrating that there is no 

dominance relationship in the terms of the mentioned theorem. 

                                                           
22 Something similar happens when comparing indices gG  and gG (see Figure A1 in the Appendix B). 
23 Remember that white women here account for 42.3% of the workers (the highest share in our selected MAs). 
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Figure 4. Local segregation curves (actual and maximum), Pittsburgh and New Orleans 

The segregation curve of white women in Pittsburgh dominates that of white women in New 

Orleans, which implies that not only index Dg but all the indices consistent with that 

dominance criterion (as is the case of Gg and g
αΦ ) will conclude that white women have a 

lower level of segregation in Pittsburgh. However, the curve of maximum segregation for 

Pittsburgh also dominates that of New Orleans (white women have a lower weight in the 

latter), which thereby demonstrates the impossibility of dominance in terms of standardized 

segregation between these two cities. In other words, we cannot state that Pittsburgh has a 

higher level of standardized segregation than New Orleans based on the wide set of indicators 

consistent with the dominance criterion established in Section 2. Neither can we assert the 

opposite. In fact, 4 out of the 6 standardized indices that we have calculated ( gD , gG , 1
gΦ , and 

2
gΦ )  indicate that Pittsburgh has a higher level of standardized segregation than New Orleans 

because, according to them, the local segregation curve of the former is “closer” to that of 

maximum segregation. However, two indices whose value judgements are more extreme (

0.1
gΦ  and 0.5

gΦ ) attribute a greater standardized segregation to New Orleans.24 

                                                           
24 This is especially true in the case of 0.1

gΦ  (see Figure A1 in the Appendix B) because 0.1
gΦ  focuses on the 

intensity of underrepresentation at an extraordinarily high level. That white women in New Orleans are virtually 
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4. Final comments 
What can we conclude in light of the results presented in the previous section? Are white 

women in Pittsburgh highly concentrated in some occupations (as most standardized indices 

suggest) or is the segregation of this group below average and, especially, smaller than in 

New Orleans (as the unstandardized indices display)?  The answers to these questions depend 

on what we mean by segregation. If we think of a group’s segregation as the extent to which 

its occupational distribution departs from an even distribution—where the group accounts 

for the same share of workers in each occupation as it does in the MA—we would say that 

Pittsburgh exhibits an intermediate-low level, whereas New Orleans is among the MAs with 

the highest values. If, instead, we are interested in determining how close the group is to its 

maximum concentration in occupations, which depends on the group’s relative size, 

Pittsburgh is the MA with the highest level of segregation, as several standardized indices 

display.  

As this research has shown, the standardized local segregation indices developed here have 

several desirable properties and are consistent with existing standardized overall segregation 

indices, given that the latter can be written as the weighted average of the standardized local 

segregation of the groups involved. Although all of these standardized (overall and local) 

segregation indices are, like most unstandardized indices, margin-dependent, they result from 

a normalization that ensures the index is equal to 1 when there is maximum segregation. This 

allows overcoming the limitation of most unstandardized indices, the maximum values of 

which depend on the relative size of the groups under study. The cost of using standardized 

measures is that they focus on the “proximity” to a maximum segregation level, which 

depends on demographic composition, whereas segregation from an evenness perspective is 

usually viewed as separation from an egalitarian distribution, the segregation level of which 

is always equal to 0. 

For this reason, the standardized local segregation indices developed here are not proposed 

as an alternative to existing local segregation indices, but as a complementary tool to explore 

                                                           
absent from occupations that account for 6% of total employment implies that the value of 0.1

gΦ  in this MA is 
almost double that in Pittsburgh (where occupations with no white women represent less than 2% of total 
employment).   
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segregation from a different angle. In our opinion, the standardized local (respectively, 

overall) indices can be especially useful in empirical studies that involve segregation 

comparisons among groups (respectively, societies) of highly distinct relative sizes 

(respectively, composition).  

  

References: 

Alonso-Villar, O. and Del Río, C. (2010): “Local versus Overall Segregation Measures,” 
Mathematical Social Sciences 60, 30-38. 

Alonso-Villar, O. and Del Río, C. (2017a): “Occupational Segregation and Well-being,” 
Review of Income and Wealth 63(2), 269-287.  

Alonso-Villar, O. and Del Río, C. (2017b): “Mapping the Occupational Segregation of White 
Women in the US: Differences across Metropolitan Areas,” Papers in Regional Science 
96(3), 603-625. 

Boisso, D, Hayes, K., Hirschberg, J. and Silber, J. (1994): “Occupational Segregation in the 
Multidimensional Case. Decomposition and Tests of Significance,” Journal of Econometrics 
61, 161-171. 

Del Río C. and Alonso-Villar, O. (2015): “The Evolution of Occupational Segregation in the 
U.S., 1940-2010: The Gains and Losses of Gender-Race/Ethnic Groups,” Demography 52 
(3), 967-988. 

Frankel, D.M. and Volij, O. (2011): “Measuring School Segregation,” Journal of Economic 
Theory 146(1), 1-38. 

James, D.R. and Taeuber, K.E. (1985): “Measures of segregation,” Sociological 
Methodology 15, 1-32. 

Moir, H. and Selby Smith, J. (1979): “Industrial Segregation in the Australian Labour 
Market,” Journal of Industrial Relations 21, 281-291. 

Mora, R. and Ruiz-Castillo, J. (2011): “Entropy-based Segregation Indices,” Sociological 
Methodology 63(2), 269-287. 

Morgan, B. (1975): “The Segregation of Socioeconomic Groups in Urban Areas: A 
Comparative Analysis,” Urban Studies 12, 47-60. 
Reardon, S.F. and Firebaugh, G. (2002): “Measures of Multigroup Segregation,” 
Sociological Methodology 32, 33-76. 



24 
 

Ruggles, S., Genadek, K., Goeken, R., Grover, J., and Sobek, M. (2017): Integrated Public 
Use Microdata Series: Version 7.0 [dataset]. Minneapolis, MN: University of Minnesota. 

Sakoda, J. (1981): “A Generalized Index of Dissimilarity,” Demography 18, 245-250. 

Silber, J. (1992): “Occupational Segregation Indices in the Multidimensional Case: A Note,” 
The Economic Record 68, 276-277. 

Theil, H. and Finizza, A. (1971): “A Note on the Measurement of Racial Integration of 
Schools by Means of Informational Concepts,” Journal of Mathematical Sociology 1, 187-
194. 

 

  



25 
 

Appendix A 
 

Maximum values of the indices. Making use of the graphical interpretation of Gg, it is clear 

that *gG  is twice the difference between the area of the triangle of base 1 and that of the 

triangle of base 
gC

T
(see Figure 1 and note that 12 1

2 2

g gC C
T T

 
− = − 

 
). Analogously, taking 

into account that the 45º line represents points at which the ordinate is equal to the abscissa, 

the highest vertical distance of the curve is equal to the length of the horizontal part of the 

curve. In other words, * 1
g

g CD
T

= − .  

To obtain *g
αΦ  ( 0,1α ≠ ), note that if the group is fully segregated
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Likewise, it is straightforward to see that *
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Proof of Proposition 1. Assume that i and h are two units such that 
g g
i h

i h

c c
t t
< . Taking into 

account that the local segregation index ( ),g gc tΘ  satisfies insensitivity to proportional 

divisions, the segregation of group g remains the same if units i and h are split into ti and th 

subunits (of size 1 each), where the former subunits each account for 
g
i

i

c
t

 “individuals” of 

group g and the latter for 
g
h

h

c
t

. 

If 
i h

d
t t

 “people” of group g leave one of the subunits of unit i to move to one of the subunits 

of unit h, the segregation of group g will increase, given that the two subunits have the same 

size and the index satisfies the property of disequalizing movements type I. Reiterating this 
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for all other subunits of h, we will have a sequence of th disequalizing movements type I 

between units of the same size, which leads to a higher segregation for the group (a total of 

i

d
t

 individuals of group g are moving from a subunit of unit i to unit h). If we repeat this 

process for any other subunit of unit i, eventually, i
i

dt d
t
=  individuals will have switched 

from i to h. 

In other words, a transfer of d individuals of group g from i to h, which does not alter the size 

of these units,25 can be expressed as a sequence of disequalizing movements type I between 

units of the same size, which signifies a rise in the level of segregation of the group. Once 

more employing the insensitivity to proportional divisions, the segregation of the group is 

the same in the case of either having these small subunits or aggregating them to give rise to 

units i and h, which completes the proof. 

Proof of Proposition 2. Assume that i and h are two units such that 
g g
i h

i h

c c
t t
<  and that d  

individuals ( g
id c< ) are transferred from i to h without replacement, i.e., 'g g

i ic c d= − , 

'g g
h hc c d= + , 'i it t d= − , and 'h ht t d= +  (no changes in the other units, i.e., 'g g

j jc c=  and 

'j jt t= for ,j i h≠ ). To facilitate the graphical analysis, let us assume, without loss of 

generality, that i is the unit in which the group has the lowest representation and h is the next 

unit in the ranking (see Figure A1).  

First, we prove that, at point it d
T
−

 , the post-transfer curve is below the other (the situation 

depicted in the chart), making use of simple trigonometric analysis.26 To this end, we need 

                                                           
25 This implies that an equal number of individuals from other groups has moved in the opposite direction. 

26 If g
id c= , it is trivial to prove that the curve after the transfer, which is equal to zero up to point it d

T
−

, is 

below the other. 
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only prove that tan( ) tan( )α β> . Note that tan( )

g
i
g
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c
C
t
T

α =  and tan( )

g
i
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c d
C
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− . It is 

straightforward to see that tan( ) tan( ) g
i it cα β> ⇔ > . Given that in unit i the group’s 

representation is below that in h, then 1
g
i

i

c
t
<  and, consequently, tan( ) tan( )α β> . 

 

Figure A1. The segregation curve before (solid line) and after transfers (dash line) 

Second, we must show that, at point it
T

, the curve after the transfer is below (or equal to) the 

other. If we denote by x the difference between the curve after the transfer at point it
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+ ≤ . It is easy to see that this inequality holds 
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Proof of Corollary 1. As shown by Alonso-Villar and Del Río (2010), Gg and g
αΦ  satisfy 

scale and size invariance, symmetry, insensitivity to proportional divisions, and sensitivity to 

disequalizing movements type I. That these indices satisfy sensitivity to disequalizing 

movements type II follows from Proposition 1. As these indices are consistent with the 

dominance criterion given by the local segregation curve (Alonso-Villar and Del Río, 2010), 

it follows from Proposition 2 that they satisfy sensitivity to disequalizing movements type III. 

The properties of index Dg follow immediately from its definition. 

Proof of Corollary 2. This follows straightforwardly from the fact that the unstandardized 

versions of these indices satisfy the corresponding properties and the standardized indices 

are obtained through the former by dividing them by a constant.  

Proof of Theorem. If the local segregation curve in case A dominates that in case B, then 

any local segregation index ( ),g gc tΘ  that satisfies scale invariance, symmetry, insensitivity 

to proportional divisions, and sensitivity to disequalizing movements type I will have a lower 

value in case A than in B (Alonso-Villar and Del Río, 2010; Theorem 1). For the same reason, 

the value of the index in case of maximum segregation, *gΘ , is higher in scenario B than in 

A given that the curve of the former dominates that of the latter. Therefore, 

( ) ( )
*

,
,

g g
g g

g

c t
c t

Θ
Θ =

Θ
  is higher in A than in B, which completes the proof. 

Proof of Proposition 3. As explained above, for a group with a population share of 
gC

T
, the 

curve of maximum segregation is equal to 0 up to an abscise value of 1
gC

T
−  and after that 

point the curve is a straight line that links points 1 ,0
gC

T
 
− 

 
 and ( )1,1 . Therefore, if one 

group has a larger share of the population than another group, the curve of maximum 

segregation will be equal to 0 up to a point that is lower than that of the other group and after 
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that point the curve will be above the other (by construction of the curve, see Figure 1). This 

means that the curve of the larger group dominates that of the smaller. 

We prove the other implication by proof by contradiction. Assume that the local segregation 

curve of a group dominates that of another group, but that the former group has a lower share 

of the population than the latter. If the group in the first case has a lower share, this means 

that the curve of maximum segregation is equal to 0 up to an abscissa greater than that of the 

other group and that its curve is thereby dominated by the other (i.e., is below than or equal 

to the other curve), which contradicts the assumption. 
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Appendix B 

Table A1. Population share of white women and indices Dg and gD  in each MA 

 

 Segregation indices 
Population share of 

white women 
Metropolitan Areas ranked by gD  gD  

gD  
g*D  

Columbus, OH 0.2475 0.3926 0.6304 37.0 
Minneapolis-St. Paul-Bloomington, MN-WI 0.2488 0.4109 0.6055 39.4 
Boston-Cambridge-Newton, MA-NH 0.2508 0.3968 0.6321 36.8 
Washington-Arlington-Alexandria, DC-VA-MD-WV 0.2559 0.3308 0.7736 22.6 
Baltimore-Columbia-Towson, MD 0.2565 0.3626 0.7074 29.3 
Tampa-St. Petersburg-Clearwater, FL 0.2610 0.3832 0.6811 31.9 
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 0.2622 0.3907 0.6711 32.9 
Sacramento--Roseville--Arden-Arcade, CA 0.2625 0.3625 0.7242 27.6 
Buffalo-Cheektowaga-Niagara Falls, NY 0.2626 0.4423 0.5936 40.6 
Hartford-West Hartford-East Hartford, CT 0.2631 0.4076 0.6455 35.4 
Rochester, NY 0.2638 0.4408 0.5984 40.2 
St. Louis, MO-IL 0.2650 0.4211 0.6292 37.1 
Louisville/Jefferson County, KY-IN 0.2663 0.4316 0.6171 38.3 
Indianapolis-Carmel-Anderson, IN 0.2664 0.4228 0.6301 37.0 
Cleveland-Elyria, OH 0.2668 0.4194 0.6360 36.4 
Cincinnati, OH-KY-IN 0.2672 0.4400 0.6073 39.3 
Seattle-Tacoma-Bellevue, WA 0.2682 0.3917 0.6847 31.5 
Denver-Aurora-Lakewood, CO 0.2699 0.4012 0.6728 32.7 
Nashville-Davidson--Murfreesboro--Franklin, TN 0.2716 0.4224 0.6428 35.7 
Pittsburgh, PA 0.2718 0.4713 0.5767 42.3 
Orlando-Kissimmee-Sanford, FL 0.2722 0.3595 0.7572 24.3 
Portland-Vancouver-Hillsboro, OR-WA 0.2739 0.4305 0.6364 36.4 
Providence-Warwick, RI-MA 0.2742 0.4568 0.6003 40.0 
Milwaukee-Waukesha-West Allis, WI 0.2749 0.4287 0.6412 35.9 
Richmond, VA 0.2752 0.3895 0.7065 29.4 
Austin-Round Rock, TX 0.2759 0.3754 0.7349 26.5 
Atlanta-Sandy Springs-Roswell, GA 0.2774 0.3626 0.7651 23.5 
Kansas City, MO-KS 0.2775 0.4381 0.6335 36.6 
Jacksonville, FL 0.2782 0.4000 0.6956 30.4 
Chicago-Naperville-Elgin, IL-IN-WI 0.2790 0.3857 0.7233 27.7 
Detroit-Warren-Dearborn, MI 0.2795 0.4191 0.6671 33.3 
San Francisco-Oakland-Hayward, CA 0.2809 0.3516 0.7989 20.1 
Raleigh, NC 0.2816 0.4025 0.6996 30.0 
New York-Newark-Jersey City, NY-NJ-PA 0.2824 0.3695 0.7643 23.6 
Phoenix-Mesa-Scottsdale, AZ 0.2851 0.3979 0.7165 28.3 
Salt Lake City, UT 0.2867 0.4362 0.6573 34.3 
Charlotte-Concord-Gastonia, NC-SC 0.2952 0.4204 0.7021 29.8 
Las Vegas-Henderson-Paradise, NV 0.2962 0.3768 0.7861 21.4 
San Diego-Carlsbad, CA 0.2970 0.3782 0.7853 21.5 
Virginia Beach-Norfolk-Newport News, VA-NC 0.2974 0.3990 0.7453 25.5 
Miami-Fort Lauderdale-West Palm Beach, FL 0.2987 0.3497 0.8540 14.6 
Oklahoma City, OK 0.3011 0.4434 0.6791 32.1 
San Antonio-New Braunfels, TX 0.3013 0.3600 0.8370 16.3 
Dallas-Fort Worth-Arlington, TX 0.3044 0.3984 0.7640 23.6 
Birmingham-Hoover, AL 0.3050 0.4401 0.6930 30.7 
Los Angeles-Long Beach-Anaheim, CA 0.3059 0.3594 0.8513 14.9 
New Orleans-Metairie, LA 0.3212 0.4360 0.7367 26.3 
Memphis, TN-MS-AR 0.3257 0.4220 0.7718 22.8 
Riverside-San Bernardino-Ontario, CA 0.3281 0.3911 0.8389 16.1 
San Jose-Sunnyvale-Santa Clara, CA 0.3350 0.3954 0.8472 15.3 
Houston-The Woodlands-Sugar Land, TX 0.3366 0.4090 0.8231 17.7 

 



31 
 

 

  

  

 
Figure A1. Standardized versus unstandardized local segregation indices in each MA  
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